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TECHNICAL NOTE 3157

METHOD FOR CALCULATION OF COMPRESSIBLE ILAMINAR
BOUNDARY LAYER WITH AXTAL PRESSURE
GRADTENT AND HEAT TRANSFER

By Psul A. Libby and Morris Morduchow
SUMMARY

A rapid and sufficiently accurate method, for most. practical purposes,
of determining laminer-boundary-leyer cheracteristics in flow with a given
free-stream Mach number and given velocity distribution at the edge of the
boundary layer 1s presented. The method can be easily applied to flow with
zero pressure gradient for any (constant) Prandtl number of the order of
unity and any given temperature distribution along the wall. HNumerical
examples are given to lllustrate the method and the satisfactory accuracy
obtained. For flow in an axiasl pressure gradient, the method can be
applied for & Prandtl number of unity and any given uniform wall temper-
ature. The methods developed here are based on an application of the
Kermén integral method to both the momentum and energy equations, in
conjunction with a sixth-degree velocity profile and a seventh-degree
stagnation-enthalpy profile. A single boundary-layer thickness and one
of the coefficients in the thermal profile are the parameters in this
two-parameter method.

INTRODUCTION

The aim of this report is to present a relatively simple method,
sufficiently accurate for most practical purposes, of calculating the
laminar-boundary-layer characteristics in the compressible flow over a
given object with heat transfer at the wall.

The method is based on the extension of the Kdrmsn-Pohlhausen method
to sixth-degree velocity profiles and seventh-degree stagnation-enthalpy
profiles. The use of sixth-degree velocity profiles is in accordance with
the conclusions of reference 1, wherein it was found that such profiles
can usually be expected to lead to results of adequate accuracy without
much increase in computational work. Such profiles have been applied
with satisfactory results for compressible flow over a flat plate with
heat transfer (ref. 2) and for compressible flow in an axlal pressure
gradient without heat transfer (refs. 3 and 4).
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The present analysis conslsts of +two main parts. In the first a
gimple approximate general solution is developed for flow without axiasl
pressure gradient, with any given Mach numbeg_(neglecting hypersonic
effects) and gilven distribution of temperature along the wall. The
Prandtl number is also left arbitrary, although it is required to be of
the order of magnitude of unity. The coefficients of specific heat, as
well as the Prandtl number, are assumed as constant, while the viscosity
coefficient is assumed to vary linearly with the temperature, the propor-
tionality factor being chosen in accordance with the Sutherland relatiom,
as in references 1, 2, 3, 5, and 6. In the second part of this analysis,
a simple approximste general solution 1s developed for flow in a pressure
gradient with any given constant wall temperature, free-stream Mach num-
ber, and velocity distribution outside the boundery layer. The Prandtl
number is, however, assumed to be unity.

A brief indication of the pertinent literature may be worth while.
The flow without axial pressure gradient (e.g., flow over a flat plate)
has, of course, already been treated to a considerable extent. Kérmén
and Tsien (ref. T) derived solutions for a Prandtl number of 1, constant
wall temperature, and viscosity coefficient proportional to a power of
the temperature. Chapmsn and Rubesin (ref. 5) have obtained exact (numer -
ical) solutions for varisble wall temperature and a linear wviscosity-
temperature relation. Van Driest (ref. 8) has accurately calculated a
series of curves showing skin friction, heat-transfer coefficients, and
veloeity and temperature profiles for a constant wall temperature, using
the Sutherlend viscosity-temperature relation. Klunker and McLean
(ref. 9) have calculasted the boundary-layer characteristics using the
aectual variation of Prandtl number, specific heat, end viscosity coeffi-
cient with temperature, while Young and Janssen (ref. 10) and Moore
(ref. 11) have done likewise with the aid of a differential analyzer,
Moore taking dissociation into account.

In each of the above references, the calculations, though exact, are
fairly tedious, while, except for reference 5, the wall temperature is
assumed as constant. The advantage of the method presented in the present
report is that the calculations can be performed with relatively little
difficulty for a prescribed wall-temperature distribution, Mach number,
and Prandtl number. Although the results thus obtained will not be exact,
they will usually be sufficiently accurate in practice.

In contrast with the literature on flow over a flat plate, the liter-
ature on compressible boundary-layer flow in a pressure gradient with heat
transfer still appears to be limited. A good survey of work done on
incompressible flow can be found in reference 12. %al%khman (ref. 13)
has treated the compressible case by applying the Kérmén-Pohlheusen method
to both the momentum and energy equations. Ferrari (ref. 14) has recently
presented an accurate, but elaborate, method of calculating the boundary-
layer characteristics for arbitrary Prandtl number and uniform wall
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temperature. The present analysis has, once again, the advantage of
presenting & general approximate solutlon which involves relatively little
computational difficulty. However, the Prandtl number is here restricted
to unity.

The method of analysis used in this investigation merits some comment.
As in references 13 and 15, stagnation-enthalpy, rather than temperature,
profiles are used. The use of stagnation-enthalpy profiles leads to
significant mathematical simplifications, while it can be shown, more-
over, that for a Prandtl number of 1 the equations used here automatically
lead to what are known to be exact integrals of the energy partial-
differential equation. As has already been stated, the veloclity profiles
and stagnation-enthalpy profiles are respectively of sixth and seventh
degree here. In reference 13, both profiles are of the more customary,
but uswally less accurate, fourth-degree type. Finally, 1t is of interest
to observe that in the present analysis only a single boundary-layer
thickness is used, instead of a dynamical and a thermal boundary-layer
thickness, such as used in references 13 and 15. This, however, does not
necessarily impose any undue restrictions on the thermal profiles, since
the latter have here been permitted to contain an additional coefficient,
not determined in advance by the boundary conditions. This additional
coefficient, which must be determined by the differential equations,
replaces the thermal boundary-layer thickness as a parameter. This
explains why the stagnation-enthalpy profiles are here of one degree
higher than the velocity profiles. For Prandtl numbers near unity, as
is the case for air, it has been found (cf., for exsmple, refs. 13, 15,
and 16) that the ratio of dynamical to thermal boundary-layer thickness
1s close to unity. Consequently, the present analysis should yield
sufficiently accurate resulits for such cases. The advantages of using
a single boundary-layer thickness are that the equatlons thus obtained
are somewvhat simpler and that 1t appears somewhat easier to solve for
the additional coefficient than for the second boundary-layer thickness,
especially for flow without & pressure gradient.l

This work, carried out at the Polytechnic Imnstitute of Brooklyn
Aeronautical Laboratories, was sponsored by and conducted with the
financial assistance of the National Advisory Committee for Aeronsutics.
The authors are happy to acknowledge the aid of Mr. Richard Grape in
carrying out the numerical calculations and in checking the equations.

Imhis is due primarily to the fact that in the two-thickness method,
the ratlio of the thicknesses appears in the eqpations in a complicated
manner.
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constants in equations (50) and (51) «
constants defined by equations (63)

coefficient of 79 1in velocity profile (eq. (20))

11

constant "average” value of a,

coefficient of +J in stagnation-enthalpy profile (eq. (21))
constant "average" value of by

proportionality factor in temperature-viscosity relation
(eqs. (9) and (10))

constant "average" value of C

l\/; (nou/dy), ax

(1/2)pmum?

average skin-friction coefficient,

local skin-friction coefficient, Qlau/ay)o/(pmumg)a

coefficient of gj in given wall-temperature distribution
(eq. (AL))

specific heats at constant pressure and at constant volume,
respectively

coefficient of &Y in equation (A5)
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Fy,Fp,Fx integrals appearing in equations (11) and (12) and defined
thereafter (cf. also egs. (61))

fi,fé constant "average" values of F; and Fy

fi ‘functlons of T appearing in equation (A5) and defined there

Gy(t) = Ho/Hl(§)5 for Npp. =1, G = To/Te (cf. also eq. (L46))

GpsC5(£), Gy (8),G5(e),C.(¢) parameters defined in equations (33), (58v),
(45b), and (58)

H stagnation enthalpy, (u2/2) + o T

He stagnation enthalpy corresponding to equilibrium wall
temperature

h local heat-transfer coefficient (eq. (40))

k coefficient of heat conductivity

L characteristic length

M Mach number

m,Jj,1 constants defined by equations (67a)

NNu Nusselt number

N Prandtl number, ucP/k

js) static pressure .

a heat-transfer rate, -(k OT/dy) o

R gas constant, Cp ~ Cy

RL Reynolds mumber based on I, pmumL B

Rx Reynolds number based on x, P X K

S Sutherland constant; 216° R for air (cf. eq. (10))

T absolute temperature:
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Te equilibrium wall temperature for zero heat transfer
t transformation variasble, defined by equation (13) or (1k) ’
u,v veloclty components in x- and y-directions, respectively ¥
X,¥ coordinates parallel and normal to surface, respectively
Bj constant parameters, depending on NPr’ and defined after

equation (Ak)
¥ ratio of specific heats, cp/bv; y = 1.4 for air
5,54 boundary-layer thicknesses in xy- and xt-planes, respec~

tively (cf. also egs. (15) and (16)) L
1 recovery factor, defined by equation (42)
N = By (8+/1) 2 -
K coefficient of viscosity
v kinematic viscosity, u/p ’
3 dimensionless distance along wall, x/L .
p mass density
T dimensionless variable, t/St
Subscripts:
o] velues at wall; for example, T,
1 local . values at outer edge of boundary layer; for example,

Tl and Ml o '
® values in undisturbed free stream; for example, M_ (Also,

ef: footnote 2)
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GENERAL EQUATIONS
The following equaitlons describe the steady, two-dimensional, laminar-
boundary-lsyer flow of a compressible gas along a slightly curved wall:

Momentum equation in the x-direction:
puu, + pvu, = -Py + (uuy) (1)
y

Momentum equation in the y-direction:

=0 2
1 (2)
Continuity equation:
(pu), + (ov), = © (3)
Equation of state:
p = PRT (&)
Energy equation:
pucyTy + pvepTy = upy + (F?ﬁy + uuye (5)

Equation (2) implies that the static pressure within the boundary layer
is the same as the static pressure in the potential flow Jjust outside the
boundary layer. Thus, for slightly curved walls

-p, = -dp/dx = plul(dul/dx) (6)

where the subscript 1 denotes local conditions at the outer edge of the
boundary layer. It may be noted that the assumption that the pressure
in the boundary layer is equal to the potential flow pressure must be



8 NACA TN 3157

modified at high Mach numbers and very low Reynolds numbers (cf. ref. 17). "
The methods to be used In the analysis of such flows are as yet not clear.

As 1s usual in aseronautical problems the coefficlents of viscosity and -
heat conductivity are considered to be known functions of the temper- &
ature, while the coefficient of specific heat at constant pressure is

assumed constant.

It is convenlent In the method of analysis to be presented here to
rewrite equation (5). If equation (1) is multiplied by u and added to
equation (5), it is readily possible to put the resulting equation in
the form

Npy (Pully + vay an 1 - ﬂPr) (u2/2)£' (7)

¥y

provided the Prandtl number is assumed constant. For most gases the
actual change of Prandtl number with temperature 1s sufficiently small

to Jjustify this assumption, especially since the experimental determl-
nation of the heat conductivity appearing in the Prandtl number is subject
to considerable error (cf. ref. 18).

Before discussing & method of treatment of equations (1), (3), (),
(6), and (7) the mass density and coefficlent of viscosity will be written
explicitly in terms of the temperature. From equations (2) and (4) one v
obtains the equation ' v

-p/pl = T, /T (8)

For mathematical convenience the viscosity-temperature relation suggested
in references 5 and 19 is extended here to the case of pressure gradient.
Thus, within the boundary layer

ki = C(T/T,) (9)

\-

where

C = (To/Tm)l/z(Tm + s)/(TO + 8) (10)

With this choice of C +the approximation of equation (9) to the actual
viscosity-temperature relation is good in the neighborhood of the wall, v
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where the skin friction and heat-transfer properties are determined, and
1s, for most problems, considered satisfactory throughout the boundary
layer. It may be pointed out that this viscosity-temperature relation
is equivalent to using ufug = C(T/Tl) where C is similarly defined

in terms of T, and Ty, if it is assumed that the ratio ”1/“m is
calculated by means of the exact Sutherland relastion.

By integrating equations (1) and (7) with respect to t over the
boundary-layer thickness + =0 to t = Bt and using the boundary con-

ditions u =v =0 at t = 0, together with smooth transition of the
velocity and temperature profiles to their local main-stream values, the
following differential-integral equations sre obtained:

(FI/E)N + N4F ' + T (logg pp)' + (Logg up)' |%1 + (1 o - 1 M12)F; -
c (ﬂw /ol) (uw/ul) (Tl/Tm) Ku /ul) Jo (11)
(F3/2) AR AQFS + FE_IKloge pl)' ¥ (loge ul)zl =
C(p m/pl) (um /ul) (7, /Tc) (1/NP1,) [(H ) Jo (12)
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A= (6,0 /L) 2 (pwuml'./um)
g = x/L

T = t/ét

The prime denotes differentiation with respect to &, and t 1s the
Dorodnitzyn variable defined by the transformation

% =j;y (v, /) oy (13)
or by the inverse

¥ =f0t (T/Tl) at (1k)

Moreover,

8y = /(; (Tl/T) dy (15)

or

5 =/jt (T/Tl) at (16)

The quantities pl/p and M1 in equations (11) and (12) are
[>5]

related to ul/uw, which is & function of ¢ prescribed by the potential

flow about the body in question. Thus, in accordance wilth the usual
isentropic flow rela:bions,2

2Tn applying these relations and interpreting Infinity conditions,
the presence, In the supersonic case, of attached or detached bow waves
should be considered. "Infinity" conditions should then be taken as con-
ditions Just behind such shocks on the streamline which in potential flow
would form the body under consideration.
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7+1 _ /(1)

Py /pm = (Tl/Too> =<1 + (7 - 1) (Mm2/2) E_ - (ul /um) i (a7

~

-1/2
(18)

'

W = (g il s & - 1) (Mf/e)[l - (ul/umﬂ

A

Approximate solutions to equations (11) and (12) can be found by
assuning u/ul and H/Hi as functions of T which satisfy certain

boundary conditions at 7 = 0. and T = 1 to be discussed in detail
later. In these profiles one parameter in addition to A is left unde-
termined after the boundary conditions are satisfied, and these two param-
eters are considered as the two unknown functions of & +to be determined
by equations (11) and (12).

In setting up the final differential equations, examination of equa-
tions (11) and (12) indicates that, in addition to selecting the profiles
for u/uy and H/Hi with their appropriate boundary conditions, one

must prescribe (ul/ukg(g), M, and Np.. Moreover, the values of the

oot
fluid properties et infinity must also be specified. From the solutions
to equations (11) and (12) all quantities in the ET-plane can easily be
found; the transformation, equation (14), can be applied to obtailn the
corresponding gquantities in the xy or physical plane. For this purpose
equation (14%) may be conveniently written as

y/T = (%/L) LT (H/Hl) [1 + (y - 1)<M12/2)] - (y - 1) (Mle/e) (u/u])E dr

(19)

The boundary conditions that the velocity and stegnation-enthalpy
profiles are to satisfy will now be discussed. As indicated in the
"Introduction" a sixth-degree polynomial in T for the velocity and a
seventh-degree polynomial for the stagnation enthalpy are suggested on
the basis of the critical study of the use of Integral methods in
compressible-boundary-layer analysis presented in reference 1. Thus,
let ‘
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6
u/ul = ZZ: ajrj (20)
J=0
T
J
H = bsT 21

A1l of the &j and bJ coefficlents except one are determined from

boundary conditions at T =0 and T = 1. In setting up the differential-
integral equations (11) and (12), the boundary conditions which must be
speclfied to obtain & unique and exact solution to the governing partisl-
differential equations have been applied. In the §T-plane these are:

At 7 =0,

Y/hl =0

u/ Uy

B/,

/B (&)
<H/H1§ y

u/ul = H/Hl =1
6, - ), -

The boundary conditions speclfied here are the usual ones in heat-transfer
problems. Tt is posslble to specify instead of Hq/Hl’ either B?VEE) ]
o

(23)

or some reletion between these two quantities as in the case of radlation
cooling. 1In principle there is no loss in generality here, since HO/Hl

is left arbitrary and nothing is specified with respect to E?yﬁ%g ] .
T
o
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In addition to requlring that the assumed profiles satisfy boundary
conditions (22) and (23), it 1s customary in the integral methods (cf.,
e.g., ref. 1) to select the profiles so that at the wall and at the edge
of the boundary layer some of their derivatives have the same values as
those which an exact solution to the original pasrtial-differential egqua-
tions under boundary conditions (22) and (23) would yield. For the pro-
files of equations (20) and (21) these additional conditions can be
obtained from equations (1) and (7) and from differentiation of these
equations wlth respect to t. In this way one obtains the following
boundary conditions to supplement those of equations (22) and (23):

At T =0,

Y LV ICTEN S

(Fo/m) (/) |, = () (B/E) (5)

2

(1 - NPr) (y - l)M12 [(u/ul);l (26)

E. ¥ (y - 1) (Mla/e)] (/)
oo 1) () ()" - (820 {2 -
3 - 1) O - g <u/ul>T<uﬁa)ﬁ/ o0l e

At T =1,

(%/ul i} e/hl TTT ) g/Ei)TT ) (%/Hi)TTT -° (20)
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With equations (22) to (28) fourteen of the fifteen coefficients in
the veloclty and stagnation-enthalpy profiles of equations (20) and (21) r
can be determined in terms of A, of the fifteenth coefficient (to be

chosen as by), of the prescribed functionsh_o%l/qw)(g) and (Ho/Hl)(g),
and of the prescribed parameters M, and Np..

As explained in the "Introduction," it will be cbserved that only
one boundary-layer thickness 8¢ 1s here assumed and that thus no

distinction is made between a veloclty and a temperature boundary-layer
thickness. This, however, does not impose an undue restriction on the
shape of the temperature profiles, since the latter (see eq. (21)) are
here permltied to retain an additional parameter to be determined, not
by any boundary conditions, but by the differential equations (viz,
egs. (11) and (12)).

Examination of equations (24) to (28) indicates that considerable
simplification is achieved in the boundary conditions, and therefore in
the enslysis, wnder two special cases: (a) The flow without axial pres-
sure gradient ul/u § which also corresponds to the practically

interesting case of the supersonic flow over a thin wedge, as well as

to the subsonic (or supersonic) flow over a flat plate and (b) the air-
foll with pressure gradient, and constant well temperature, in a fluid
with Prandtl number equal to unity. Although the assumption of constant
wall temperature does not appear to be exactly realized on practlcal
wings, 1t appears desirable to investigate the boundary-layer character- e
istics under these assumptions since the pressure-gradient, heat-transfer

case in a compressible flow has not yet been analyzed entirely satisfacto-

rily from the standpoint of simultaneous accuracy and simplicity.

FIOW WITHOUT AN AXTAT, PRESSURE GRADIENT

In this section a general solution based on the previously derived
integral-differential equations will be obtained for the special case of
flow without axlal pressure gradient. The accuracy of this solution 1s
then Investigated by comparing it with more exact solutlons.

General, Case
In the case of the flow without axisl pressure gradient and with

general but constent Prandtl number and varlable wall temperature the’
integral-differential equations (11) and (12) become:
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(o]

(PN +F'A =0 [(u/ul)T] (29)

(P3N + T = (i) [(H/HI)T]O (50)

Here My = M, T, =T, and so forth. The subscript « will be used

to denote the free-stream conditions for this case,

Tt is convenient to consider A and bl as the wmknowns to be

determined by equations (29) and (30). Then the velocity profile satls-
fying boundary conditions (22) to (28) is

6

wjy = 2r - 571‘ + 617 - 27 (31)

while the D 3 coefficients of the stagnation-enthalpy profile become:

b = HyfH, =Gy )

by = 2G,

by = 20zh

by, = 55(1. - Gl) - 20Gp - 8GgA - 20by - (32)

bs =-84(1- Gl) + 40Gp + 12Gz\ + 45by

o'
[9)
I

70(1 - Gl) - 30Gp - 8GzA - 36b

by = -20(1 - Gq] + 8Gp + 2GzN + 10by



16 : NACA TN 3157

where the G's are known functions of ¢ defined by:

G = (Ho/Hw) (¢)
Gp = (1 - ) (7 - l)MmQ/E- + (7 - 1)(Mm2/2)] > (33)
Gz = (1/6)Np. c-l'/c J

From the definition of Fl and from equation (31) it is found that
Fy = 985/9,009 (34)
Similsriy,

F3 =-(51/126)<1 - Gl) - (953/180,180)Gz\ -
(302/9,009)G, - (821/12,012)by (35)

With the value of Fy given by equation (34), A(¢) cen be found
directly from equation (29). Thus with the requirement that A(0) = O,

A = by /iy (36)

w'here3

3
ClEf Cd§
0

Equation (30), which gives b,(£), becomes:

Fz' - (Fl/nmPr) (¢/c1)oy + (F5 /) (¢/cy) =©° (37)

31¢ mey be noted that in this analysis the temperature-viscosity
proportionality factor C, unlike in reference 5, can be permitted to
vary along the plate (i.e., C = C(¢)) without any mathematical difficulty.
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The solution of equation (37) satisfying the requirement that by be
finite at & =0 1s '

-B £ By
b, = Cy 1f0 c, 6 (8) a (582)
where
q
By = (1/2) + (985/2,463) (1/Np, )
G, (¢) = (12,012/821) ((31/252) (1 - Gl) (c/cl) - g (560)
Gl'{(51/1.26) + (9551‘11,1_/29,550) [(5/2) - (clc/ 02)} -
(95305, /29,550) (Cr/C)61" - (152/9,009)(¢/Cy) G2)
W/

From equation (38a) with any prescribed temperature distribution
Gy (¢) at the wall, by = by(¢) can be readily determined. From equa-

tions (32) the remaining bJ coefficients can then be found as functioms
of & and of the prescribed flow parameters, for example, NPr and M_.
With the & and bJ coefficlents and A &ll determined, the veloecity

and stegnation-enthalpy distributions throughout the {T-plane are known.
By application of equation (19), these distributions in the xy or phys-

ical plane are easlly determined.

The average skin-friction coefficient Cp for the length L can be
celculated from equations (31) and (36) as

Cr \[Bp, = 1.322‘/61 (39)

1
where Cl =‘/p C dt.
0
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The local heat-transfer coefficlent h 1s usually defined as

h= -<k'I'y) ] /(To - Te) (40)

Using solution (36) for A, equation (40) yields:
= -0.165 \[Ry (C/\/—)(klb /L G, -

[1+ (y - 1) Ml n/e]/[ + (7 - 1) 2/2]} (41)

; where 1 1is the recovery factor defined by the equation

|

Te/Ty = 1+ (7 - 1)(M12'q/2) = (H/) [1 + (7 - 1) (M12 /2] (42)

The (nondimensional) Nusselt number Ny, 1s thus

Ny, =bxfig = - 0.165(c /\1) Vg, to
u =hxfk [1+(7—1)M1/ ]]:+ 7-1)1\41/2):]

The value of 17 .follows by setting bl = 0 and solving for the
constant wall temperature, as determined by G. Equations (33), (38),
and (42) with y = 1.4 are thus found to imply:

n=1- 0.272(1 - NPr) (h4)
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It should be pointed out that equation (4k4) yields for N, . = 0.72
Pr

a value of 7 = 0.924%, which must be compared with the value of 0.8:5
glven by the mathemstically more exact method of Chapmsn and Rubesin.
Although this result must be considered a consequence of the approximate
method of analysils used here, calculations involving rates of heat trans-
fer (such as Nusselt number) for given values of the wall temperature
will not be directly affected by the equilibrium wall temperature angd,
therefore, will not be appreciasbly affected by any ipaccuracy in n.4
This is borne out by the numericel example and the comparison with an
exact solution, given in & subsequent section here, with NPr = 0.72.

It may nevertheless be convenient for certain applications to express
the wall temperature in terms of the predicted equilibrium temperature.
With the additional simplification of replacing varisble C by an average
velue C equation (43) becomes:

NNu/\/i - 0.207 T [ - (To/Te):l . fo F o (452)

where

Bp-1

G5 = & [1 - (To/Te)] - [2 + (60,039/152,675)NP€| (TO/Te)‘g -
(40,026/152,675)Npy. (To/ Te) "ga} (45b)

In deriving equations (45a) and (45b), the following relation between Gy
and To/Te (cf. eq. (42)) was used:

G = (To/Te) [1 + (y - 1) (M12/2)1£| E + (y - 1) (Mlz 2)] (46)

hBecause of the inaccurascy in 17, it will be found, of course, that
when the wall temperature has the same value as the true equilibrium
temperature, the present equations will not lead exactly to a zero heat
transfer at the wall. However, in such a case, it will be found t*.3t the
calculated rate of heat transfer will be relatively esmall.
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It should be observed that the recovery factor 7 dJdoes not appear in
solution (45a), although TO/Te is prescribed.

If it is desired to calculate the actual rate of heat transfer g
(in British thermal units per second per square foot) for a given
ratio Tg/Te from eguation (h5a), then the Nusselt numper as determined
by equation (45a) should be multiplied by (kl /xXTO - Tg), vhere T, 1s
the actual equilibrium wall temperature (as given, e.g., by exact theory
or by experiment). In practice, however, the wall temperature To (or
the ratio TO/Tm), rather than the ratio of wall temperature to equilib-

rium temperature, will usually be prescribed. In that case, the rate of
heat transfer can be directly calculated (without any intermediete use
at all of the recovery factor 1) from the expression:

q = -(k dT/3y), = -C k"fl (1 + L > L Mle)El—)\- % R, 7)

The quantity by cen be calculated fram equations (38a) and (38b) for
flow over a flat plate, with the observation that

-1
61 = (T,/Ty) (1 + L3 = Mle) (48)

Equation (47) has been derived with the use of the following relation
between temperature and stagnation-enthalpy profiles, resulting from the
definition of the stagnatlon enthelpy H:

R N o P I

In order to determine the velocity and temperature profiles in the
physical (xy) plane, the inverse transformation given by equation (19)
must be used to find the coordinate y assoclated with the variables ¢
and T, while the x-coordinate may be found directly from the definition

of E.



NACA TN 3157 21

If the wall-temperature distribution is prescribed as a polynomial
in the distance ¢ along the wall, then the Nusselt number and temper-
ature profiles, following from equations (452), (45b), and (49), can be
directly calculated, without any quadratures, from the expllcit expres-
sions given In the appendix.

" It is of interest to observed the wall-temperature distribution

required for zero heat tramsfer sccording to equations (45a) and (45b).
Thus, by setting G5 = 0, a second-order linear differential equation

in To/Te is obtained, whose gemeral solution is:

T -1/2 -7.63/N
E<2=1+A§, + Bt /Yer (50)
(<]

where A &and B are arbitrary constants. Equation (50) implies that
zero heat-transfer conditions will be satisfled not only by a uniform
wall temperature T, but also by a wall temperature varying inversely

as & certain power of the distance £ along the flow. In particular,

the heat-trensfer rate vanishes for 1 - (T /T.) = g-L/2

the Prandtl number). This result was also cbtained by Levy (ref. 20) for
incompressible flow, using an snalysis restricted to power-law wall-
temperature distributions. The wall tempersture according to this distri-
bution would be infinite at & = O, but Eckert (ref. 21) has reasoned
that a heat-line source or sink placed at the region where € = 0 might
result in a temperature distribution of this type. The case of upstream
cooling such as analyzed in reference 22 1s the physical counterpart of
the abstraction of this line source or sink. ZEquation (50) indicates
that there is another type of wall-temperature distribution for zero heat
-7.63/NP1,
transfer, nemely, 1 - (T,/Te) « & . This is not included in

reference 20, where negatlve powers of & for To(g) lower in absolute
vaelue than 7.63/NPr (approximately 10 for air) were assumed. It should

be noted that the results obtained in the present analysis are valid for
compressible flow (i.e., for any Mach number). Finally, it mey be noted
that temperature distributions of the form of equation (50) are not
included in polynomial distributions, such as those to which reference 5
1s restricted.

(regardless of

JThe observations in this paragraeph were pointed out to the authors
by Dr. M. Bloom.
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Constant Wall Temperature and NPr = 1

A special simple case of the above solution for flow over a flat
plate is of interest here. This is the case of constant wall temperature
and Prandtl number equal to unity. This case will now be shown to glve
a particularly simple check on the accuracy of the method presented here.

It is well known that 1f the Prandtl number is assumed equal to unity
then equations (1) and (7) imply for the flat-plate case that

H=A+ Bu (51)

where A and B are arbitrary constants. Equation .(51) is an exact
stagnation-enthalpy relatlion which satisfies the boundary condltions of
congtant wall temperature both with and without heat transfer. Therefore,
one test of the approximate method presented above 1ls its automatic
reduction to this exact relation, if the conditions under which this
relation is known to be exact are lmposed. This test will now be applied.

For the case of constant wall temperature and a Prandtl number of
unity, equations (38b) and (33) imply:
oy = (4,433/2,463) (1 - Gy) (1/8)
Hence, equation (38a) ylelds:

b, = 2(1 - Gl) (52)

Furthermore, from equations (32),

bp = b3 = O A

by = 51 - &)

bg = 6(1 - Gy) > (53)
bg = -2(1 - G)

by = O
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When these bj coefficients are substituted into the stagnation-enthalpy
profile, one obtains

BBy = G + (L - G1)(2T - 5t + 675 - 215) (54)

end thus, by comparison with equation (31),

HfE = Gy + (1 - Gy)(ufu) (55)

Equation (55) is exactly equation (51) in nondimensional form, with

the boundsxry conditions that H = HO when uw =0 and H = Hi when

u=1u. It is thus seen that the reduction to the exact energy equation

for this special case 1s automatic and rigorous. It has already been
shown 1n reference 1 that the agreement between the results of the inte-
grael method using a sixth-degree velocity profile in conjumetion with
equation (55) (i.e., for constant wall temperature and Prandtl number
equal to unity) end the results of the exact solution of reference 5 is
good. The skin friction and heat transfer are for all practical purposes
exactly predicted and the laminar-boundary-layer stability limits are in
good agreement. It can therefore be expected that the more general inte-
gral method presented here, valid for cases of heat transfer in a pres-
sure gradient, will be accurate in more general cases, since the two
integral methods are In complete agreement for the special case just
considered.

Comparison With the More Exsct Method of Chapman and Rubesin
(Varieble Wall Temperature and Np. # 1)

In reference 5, Chapman and Rubesin have applied their analysis to
the case of a varisble, prescribed wall temperature. To simplify the
numerlcal analysis the proportionslity constant C was assumed by them
to be equal to wmity. The Prandtl number was assumed to be 0.72. In
the notation used here the wall temperature was expressed there as

To[Te = 1.25 - 0.83 + 0.33t7 (56)

Thus for equation (Al) (see appendix) c, = 1.25, cy = -0.83, and
¢y = 0.33. The Nusselt number variation with £ given by equation (42)

is shown in figure 1, along with the results of the more exact Chapman-
Rubesin calculation. It can be seen that excellent agreement is realized.
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It will be noted from equation (39) with Ei = 1 +that the average skin
frictlon obtalned by the present equations is in excellent agreement

with the exact value Cf\/RL = 1.328, given in reference 5.

In comparing the velocity and temperature profiles predicted by the
two methods it must be kept in mind that for striet comparison the wall-
temperature distribution should be precisely the same in the two methods.
However, since Chapman and Rubesin assumed only the ratio of wall temper-
ature to equilibrium temperature and since the two methods do not glve
precisely the same recovery factor, and hence not the same equllibrium
temperature, 1t 1s necessary for this comparison to express the wall
temperature assumed by Chapman and Rubesin, as well as that used in the
present report, in terms of the free-stream temperature.

In figures 2 and 3 the comparisons of the temperature snd velocity
profiles predicted by the two methods are shown for three wvalues of ¢
and for two Mach numbers. It can be seen that excellent agreement 1s
reallzed.

It may therefore be concluded from these numerical results that the
nonmentum-and-energy integral method gilven here will yleld good results
with little computational difficulty when applied to the case of zero
axial pressure gradient, variable wall temperature, and general but
constant Prandtl number of the order of magnitude of unity.

From a practical point of view, 1t should be kept in mind that the
solutlons developed here are based on the viscosity-temperature rela-
tions (9) and (10), which are an approximation to the actual relation
for air. Because of relations (9) and (10), the results obtailned here,
namely equations (39) and (45a), indicate that, for a fixed wall temper-
ature, the skin-friction coefficient and the Nusselt number will be
independent of Mach number. For the Sutherland viscosity-temperature
relation, however, this will not be quite valid (cf. ref. 8).

FLOW WITH PRESSURE GRADIENT

For flow over & curved surface, such as an airfoil, where the local
velocity distribution wu,/u, outslide the boundary leyer is not constant,

but may be consildered as a given functlon of the distance x along the
wall, the ordinary differential equations (11) and (12), unlike the case
of zero pressure gradient, can no longer be easily solved for genersl
Prandtl number and arbitrary distribution of temperature along the wall.
For such flows, however, considerable mathematical simplifications occur
when the Prandtl number is unity and the wall temperature is unliform
(cf. especially eqs. (26) and (27)).
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- The assumption Npp = 1 has the additional theoretical advantage
that, according to equation (hh), 1t sutomatically leads to the known
exact value of the recovery factor, namely, 17 = 1, for this value of

i the Prandtl number. In fact, the parsmeter G, mnow assumes particular

physical significance, since for Np. = 1 equation (46) implies:

Gy = Tp/Te (57)

Consequently, the case of Np, = 1 and uniform wall temperature will be

treated now in detall. It will be shown that for such & case a relatively
simple approximate solutlon of the equations can be obtained for any
given velocity distribution outside the boumdary layer.

General Approximate Solution for

Npp = 1 and T0 = Constant

For this case, with (¢) arbitrary, the coefficients a
s Uy J

and b; in equations (20} and (21) for the velocity and stagnation-
enthaldy profiles can, by virtue of boundary conditions (22) to (28),
all be expressed in terms of a, and by, where bl remains arbitrary,

while ap is given by

ﬂ
ap = ~(1/20) (1y/m) " (ay /um)Gl<l - M12)7\ - gge)N  (58)

where G6(§) is a given function. The profiles can then be given in
terms of a, and by as follows:

ufuy = (2T - 57+ 610 - 276) + (a2/5) [—2‘!‘ + 572 - 10r* + 1005 - 370 4

(bl /6(;1)(-1- + 1017 - 20t + 157 - leil (59)

-
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HfE =G + (1 - 6) (55_7“ - 84> + 7076 - 2077) +

b

l(T - 207" & 4510 - 3610 + 1077) (60)

With expressions (59) and (60), the following explicit expressions

for Fl, Fé, and F3 are obitained:
5 M
F, = 0.1093 + 0.002lla, - 0.000622a," + 0.009’+12(bla2 /Gl) -
o.ooooo95(bla2 /4:.1)2 - 0.000155(bla22 /Gl)
2
Fp = 0.3% - 0.500(1 - Gl) + 0.107by + 0.0212a, - 0.00062a," +

& (61) .

2 2
0.0028 (bla2 /(}1) - 0.000lS(blaz /Gl) - 0.0000095<bla2 /Gl)
S (1 - Gl)[}.2h6 - 0.0158,, - 0.00181(blza.2 /Gl)‘J -

blE>.0685 - 0.00324a, - 0.000hl(blae /Gl)]

=
n

- J

With expressions (59), (60), and (61) inserted in equations (11)
and (12), two ordinary differential equatioms for N(¢) and by(E) are

obtained. Although these can be solved numerically for a given (ul/u £),

the process may be tedlous. A relatively simple general approximate
solution of these equations will, therefore, be derived.

Equation (11) can be solved approximately for A by assuming that
Fq a3§ F, can be replaced there by constant "average" values Fi
and F, over the distance E. This is Jjustified by the fact that the
veriable terms there, which are proportiomal to &, and bl, are rela-
tively small (ef. egs. (61)). This is equlvalent to replacing a2,

and by by constent "average" values Eé _and Ei for this purpose.

E1l
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With equation (59) for the velocity profile and equation (58) for G

equation (ll) then becomes the following lineer ordinary differential
equation in A:

(51/2)7\' + A Fl(pl'/pl) + (ul‘/ul) Epl +Z ; 1 M12<q’1 _ flﬂ -
20 (Pupy) (T ) (/) (©2)

where 9, is a constant, given by:

~
o =F +F, - %‘Gl - (bl/60)
= A + Dby
> (63)
A = 0.3G; + 0.00438 + 0.023525, - 0.00124a,2
D=

0.0905 + (0.0838 - o.ooh5832)<52/50c;l) .
-/

With relations (17) and (18), the solution of equation (62) satisfying
the condition A = 0 or finite (if u; =0 at ¢ = o) at the leading

edge (¢ = 0) is found to be:

2y-1 @
I )(55%.1) | )’Z_l'?i
_ ul/uw Ty [T at
A= (h/Fl)C 2 ( £¢ ( 7+1 CPl (64)
FoL T 'ﬁ
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Equation (64) is similar in form to equatioms obtained for zero heat
transfer in references 3 and 23 and for heat treansfer, but with fourth-
degree profiles and two boundary-lasyer thicknesses, 1n references 13
and 15.

To obtain a general approximate solution for bl(g), A' can first
be eliminated from equations (11) and (12). Assuming Fq' = F3‘ =0

for this purpose and using equation (58), the following equation 1s thus
obtained:

bl<% + _2%1) =2+ 2[5‘2 - (1/5)G1:|%2 (65)

Noting, in advance, that by will usually haeve a value approximately
equal to 2(1 - Gl), 'bl2 can be replaced by 2(1 - Gl)bl in the
relatively small term 0.0000095(1)1&2 /Gl)E appearing in F, and Fp

and in the small term O.OOOllelza.'E/C‘r_L appearing in Fz. Expressions (61)
for Fl’ F2,
with coefficients as functions of G; and a,. By substituting these
expressions into equation (65) 5 the following quadratic eqguation in bl

1s obtained:

and 1?5 can then be written as linear functions of bl,

mle + by -1 =0 (66)

where

N .
n = -62&—3 x 10 [63.90 - b.ko6ay + 2.705

L -

0.00052 - 0.00018('1_2)3
Gy2 Gy

: s -- 2 3
22 _ 0,209 22 4 0.01452(22) + 0.0056 o2 -
Gy Gy o & Gr

. i :
J = 0.24602 + 0.07917a, - 0.005868:122 + ;12 X 10 l:-281+.5 + h2.26a, - 2.067a22 + S (672)

2 _
0.046385> - 7.906 % + 0.9086 “ég + o.oh67(z—i-) - 0.0232 EG;”E - 0.0028%4 52%:]
- &

= - . - a'—2. 2
1 2(1 G']) (o 24602 0.01l+96a2)[1 + Gl(-o.loh95 +0.3Gy + 0.02116a, - 0.0006316412)]

o/




NACA TN 3157 29

If terms which will ordinarily be negligible are rejected, eguations (67a)
can be slightly reduced, thus:

fw
28, -
m=—2x 10 LL[63.90 - b .h%a, + %2 (2.705 - 0.2096a2)j|
Gy Gy
2a, L
J = 0.24602 + a,{0.07917 - 0.005868a,) + —=x 10 X
[-281;.5 F (liQ.Q(} - 2.067a2)a2 - (7.906 - O.9086a2) %2_] 7 (6To)
1
8
1= 2(1 - Gy){0.2402 - 0.00h%6a,)< 1 + G_2 ~0.10495 + 0.3G; +
1
a5 t0.02110 - 0. 21
S 000652168,

The solution of' equation (66) is:

by = - EJII: t [(‘2%)2 * i}lm (68)

(The physically appropriate root will in general be that which is closer

to the value 2( - Gl).} :

Equations (64) and (68) represent a simple approximete solution of
equations (11) and (12) for Np. = 1 and wniform wall temperature

(Gl = Constant). Their epplication will involve at most numerical
integration.

In applying equation (64), a reasonable "average" constent value
for a,, for any given (ul/uuo(g), Gy, and Mo, cen usually be obtained

by considering equation (58) for asC/GiN\ end equation (64) gor A/C.
An "average" value Ei for by, to be used in evaluating o, (eq. (63)),
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cen be obtained by considering equation (68) for bjy. TFor objects with

sharp leading edges, for which N =0 at & = 0, it will ordinarily be
found that by = 2(1 - G—_L) very roughly. After A(¢E) has been found

from equation (64), bl(ﬁ) can be easily determined from equation (68).

With A(¢) eand by(8) determined, the boundery-layer characteristics
can all be stralghtforwardly calculated. The local skin friction will be:

(ndu/dy)

L }*[l - fef) - (b132/6°G1?] (C/ ﬁ)(Tl/T«i) (ul/uoo)RL-l/a

(69)

The Nusselt number, giving heat-transfer properties at the wall, will be

Ny = (kaT/By) L / = [ / } (/) L (70)

The velocity and temperature profiles follow from equations (59) and (60),
in conjunction with equation (49) for T/Tl, end equation (19) for trans-

forming to the physical plane. -—

In accordance with conclusions reached in references 1, 2, and 3,
where the methods applied were essentially the same as in the present
investigation (viz, sixth-degree profiles, together with a solution of the
form of eq. (64)), it may be expected that the results obtained by using
the equations developed in this section will be sufficlently accurate for
most practicel purposes, including stability calculations. However, for
flow over & blunt-nosed object (i.e., "stagnation flow") or for determi-
nation of the separatlon point in an adverse pressure gradient, these equa-
tions may have to be modified to yield still greater accuracy (cf. ref. 3,
where such modifications are shown for zero heat transfer). For stagna-
tion flow (u:l_/u‘,o = kg), in fact, fourth-degree profiles glve satisfactory

61n equations (67a) and (6Tb), the exact expression (58) for a,(t)
should be used and not any "average' value.
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accuracy (ref. 3). Consequently, stagnation flows with heat transfer
could be calculated by the method of reference 15, where such profiles
are used for this case.

It should, finally, be observed that equations (64) and (68) have
been based on the assumption that Fl, Fp, and F3 are spproximately

constant, or vary slowly, along the flow. Regarding F,; and F3, this

can be Interpreted physically as an assumptlon that the ratio of the
momentum thickness to the boundary-layer thickness, and the ratio of the
thermal momentum thickness to the boundary-layer thickness, will be
approximately constant along the flow in the xt-plane. This approximation
has been justified by the relatively small variable &a, terms (replaced

here by terms in Eé) in expressions (61). In ordinary cases, the ao

terms will actually be found to be sufficiently small, either individually
or collectively, so that the approximating assumptions mede here will be
satisfied, In any doubtful case, however, one can in general easlly
check, a posteriori, the validity of the spproximate solutions developed
here by computing the varisble a, terms with the approximate solution

obtained and ascertaining whether these terms have a sufficiently small
net effect, relative to the other terms, to be replaced by constant

"average" values. Assumptions corresponding essentially 4o the use of
constant "average" values of F; and Fp, have already been applied in

previous esnalyses (refs. 3 and 15).
CONCLUSIONS

From the analysis presented herein for the laminar compressible
boundary layer with heat transfer in flow with and without an axial
pressure gradient, the following comnclusions can be drawn:

1. The boundary-layer characteristics for the flow over a flat plate
can be easlly determined wilth sufficient accuracy from the equations
developed here, for & given constant Prandtl number (of the order of mag-
nitude of unity) and a given wall-temperature distribution.

2. For flow with a pressure gradient, the boundary-layer character-
istics can also be easily determined with sufficlient accuracy by the
equations developed here, provided the Prandtl number is unity and the
wall temperature is uniform. Here, the velocity distribution outside the
boundary layer and the free-stream Mach number are considered as prescribed.
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Some modifications of the equations may, for greater accuracy, be neces-
sary for flow over a blunt-nosed object and for determination of any

posslible separation point.

Polytechnic Institute of Brooklyn,
Brooklyn, N. Y., December 11, 1552.
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APPENDIX
POLYNOMIATL, WALL-TPEMPERATURE DISTRIBUTION

If the ratio To/Te is represented as a polynomial In £, that
is iF

S
To/Te = jZOch (A1)

then equation (45a) yields:

J=0

g NF = 0.297< f )' ((1 P (& - <o) -

cjgj(;j + Bl)-l{l + 23 +
(60,039/152,675)JNP1-[1 +13,342(3 - 1)/ 20’013]}) )

With the wall temperature specified as in equation (A1), equation (19)
together with the use of equations (31), (32), (36), and (49) leads to
the following explicit expression for y(g,-r):

(y/2x)\[Ry = \/9,009?:'/985 <[T - £y + (2f2/sl):| +

(y - 1) (M12/2> (32f2 - £y + B5fh) +
[1 + (y - 1) (M12/2)1£I JZ: cjgj £+ B fd -
[2f2 /(,j + Bl)] [1+ B53 + (40,026/152,675)32]}> (83)
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where
£y = Tl:l B T (5/2)77]
£, = (u,h55/9,852)72[:2 - 1670 + Bor* - (Wk/T)O + 575]
£5 = ~(+318) [-2& + 12672 - 19273 + (828/7)7F - 2777 - 5010 + 1087 -
(1,008/11)7% + 3672 - (72/13)7@
£, = (+3/3) [2 - 12+2 + 2017 - (90/7)"* + 375]
f5 = (-r“ /20) [10 - 327 + hor2 - (160/7)75 + 5'1'){|

For convenience, the f functions and their first derivatives with respect
to time, denoted by f;', have been calculated and are plotted in

figures 4 and 5.

The temperature profiles in this case can be determined from the
explicit -expression:

Vs [l "Rt (Efe'/ﬁl)] + (7 - 1) (P ) (Bafp' - £5 + B5E,") +

e -] e -

L J=0

2, / (3 + Bl):l [1 + Bs + (uo,026/152,675)32]} (Ak)
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where

™
[
I

= (1/2) + (985/2,1;63)(1/NPT)
[1 - (1,208/4,433) (1 - NPr)] (2/61)

By = 2(1 - Npy)

o
\Y)
I

= 2Ny [3F) = (6,006/985)Np,,

™
=
|

2 + (20,013/152,675)Np,

™
i
n

The velocity profiles may be found from equations (31) and (A3).

It may be noted that, if desired, the ratio To/%l may be prescribed
as a polynomial in £, thus:

M
To/Tl = gg% ejgj (A5)

As can be seen by comparison of equations (A1) and (A5) in connmection
with equations (46) and (48), the results given by equations (A3) and (Al)
can still be used, provided that one substitutes

1

ey = EJE + (y - 1) (Ml‘?/e)ﬂ- (A6)

there.
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Variable wall temperature; Np,. = 0.72.
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NACA - Langley Field, V.



